

Overview

Winding is simply a rotational means to take up and package material for more efficient handling or preparation for the next operation. A winder is used for rolling up material in a continuous or limited length of processed material such as wire, paper, film, metals and textiles.

Winders have different names in each industry.

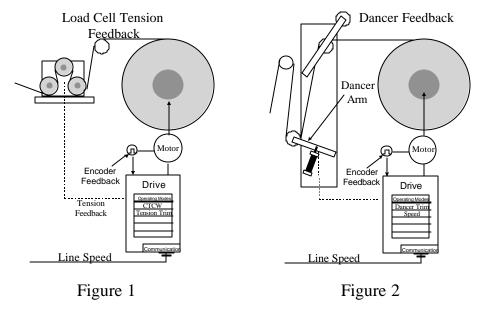
Industry	Winder Name	Roll Name
Paper, Textile, Film	Winder	Roll
Textile	Beamer	Beam
Wire	Takeup, Reeler	Reel
Wire	Spooler	Spool
Metal	Coiler	Coil

Material Wound

Wound Materials may be extensible (Stretchable) or non-extensible (non-Stretchable). This paper will discuss both materials. The typical materials that would be wound are:

1

	71	
-Paper	- Metak and Foils	
-Textile	- Fiber Glass Materials	
-Plastic Film	- Wire and cable	

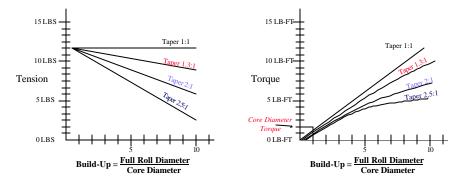

BIS8124

BIS8124

Winder control

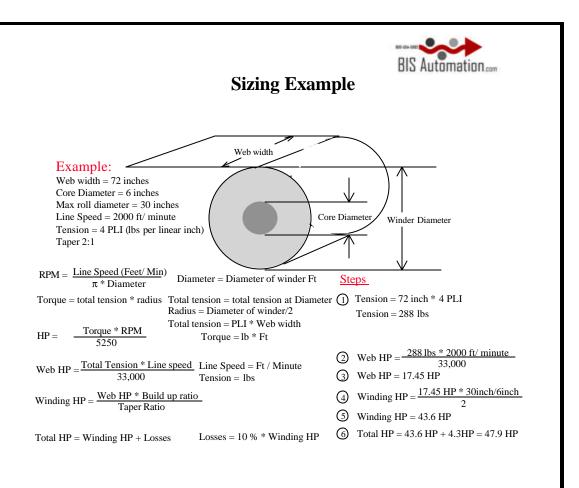
The motor RPM of the center wind varies with roll diameter and line-speed. The motor torque (which produces material tension) also varies with roll diameter and tension set point. In any given system, it is possible to **control only one variable at a time**. Center wind drives are broken up into two basic groups based on function. Either the center wind controls the speed of the material (*Speed regulated*); or the center wind controls the tension in the material (*Torque regulated*).

The *Torque regulated* center wind has the ability to run "open loop" or "closed loop". Closed loop systems usually have an outer loop regulator with a feedback device typically comprised of a load cell (force transducer). *Reference figure 1 above* The *Speed regulated* Dancer trim center winder runs in closed loop with the outer loop regulator being a dancer feedback device. *Reference figure 2 above*


2

Tension Control

In order to have repeatable perfect rolls, the winder must wind material under conditions of constant tension, or tapered tension as the roll builds from core. In materials such as paper, film, and textiles, the material must have*taper*^{*} so wound rolls do not become distorted. Without a *taper* tension profile, the tension on the inner layers becomes excessive and may deform the roll. To much taper may entrap air and cause a roll deformation known as "Starring", due to slippage between layers.


Tension trim provides direct tension control for a center wind drive by providing a trim adjustment to a torque control or a speed trim to a dancer control. Tension is measured and controlled by means of force transducers, (load cells) or dancer feedback directly actuated by the web tension. The controller will automatically adjust the motor speed to compensate for roll build-up, and compensate for changing roll inertia. Under normal operating conditions web tension is controlled, however speed follower control without trim is also provided for setup operation or as a maximum speed limit in the event of a web break.

Without taper tension, rolls tend to become distorted in shape due to the increasing torque transmitted through the inner layers of the material. The graph above shows how the tension of the material should decrease at the programmed rate.

3

BIS8124

The horsepower rating of a constant torque drive for a 5:1 build up must be five times the actual required web horse power (17.45HP) in order to produce the required torque at full roll (87.25 HP). Now we take into consideration the taper requirement, which is 2:1. The required HP drops to 42.6 HP. The energy loss in the winder is typically 10% of the winding hp.

* Reduction of web tension as winder roll diameter increases.

4

BIS8124

Customer Data

Company Name	End user Distributor OEM
Contract Name #1	Contract Name #1 e-mail
Contract Name #2	Contract Name #2 e-mail
Address	City
State	Zip
Phone	Fax

Machine Data

Machine Design speed	_ (Feet/ Minute ¹)	Machine Design Core Diamete	rs inche		
Machine Design Max roll Diameter	inches	Machine Design Max roll width	n inches		
Web Width Inches	5	Acceleration time Sec deceleration time Se			
Machine Design Tension	PLI	Taper Ratio			
Roll inertia	LB*FT ²				
	Dri	ve Data			
Manufacture		Model #			
Horse Power					
Winder Drive 🗌 New Ap	plication	Retrofit			
Existing Voltage 230VAC	2	460VAC	□ 575VAC		
Existing Drive system 🛛 AC driv	e	DC drive			
	Mot	or Data			
Existing motor Manufacture		Model #			
New motor required Yes	□ No				
Existing motor full load ratings:			AMPS		
			Volt		
			RPM (850, 1150, 1750)		
Conduit Box location if motor is to be	replaced	□ F1 □ F2	☐ F3 or ☐ NA		
Existing Blower Motor.		Voltage,	Amps or 🗖 NA		
Existing Encoder Manufacture			NA		
Existing Encoder Manufacture					

			BIS Automation.com
Existing Encoder	Digital	Analog AC	□ Analog DC
Existing Encoder Manufacturer.	-	-	
Resolution Existing (PPR) OF			
-		Magnetic pickup	
	•		
	Existing	g Gear Box	
Gear Box Ratio			
Existing Gear Box Manufacture		Model #	
New Gear Box required 🛛 🛛 Yes	D No		
Existing GearBox ratings:			Gear Box Ratio
			Frame Size
			C Face
D	rive Enclos	ure informat	ion
Ambient Temperature in control room			°F or°C
Existing Drive Enclosure 🔲 NEMA 1	□ NEMA	12 🗌 NEMA 4	X 🔲 AIR CONDITIONING
New Enclosure Spec	NEMA	12 🗌 NEMA 4	X 🔲 AIR CONDITIONING
Enclosure options 🛛 Duplex o	utlet 🗌 Lights	Empty ca	binet for future use
Other			
□ Isolation Transformer KVA □ Line Reactors Impedence □ Dynamic Braking Resistor: Duty Cy	Primary Voltage (%) cle i.e. 3%, 5% _	Load Rea	Secondary voltage AC
Dynamic Resistor Power rating	Watts		
Drive Co	ommunicati	on Requirem	ents
1 Ft/minute Max RPM * π * Core Dian 4 The existing power distribution is requ		< is providing a driv	/e system
	6		BIS8124

Drive Input Requirements start start start start <t< th=""><th>Modbus Plus</th><th>Modbus</th><th>Device Net 🔲 P</th><th>rofibus 🗌 Arc</th><th>BIS Auto</th><th>mation.com</th><th></th></t<>	Modbus Plus	Modbus	Device Net 🔲 P	rofibus 🗌 Arc	BIS Auto	mation.com	
I og I Taper on Preset Speed 1 Preset Speed 2 Other			Drive In	put Requir	rements		
Drive alarm fault Drive severe fault Run Zero speed At speed Encoder feedback pass through (PGX card) Other	🗖 Jog	□ Taper on	Preset Speed	1	Preset Speed 2		
At speedEncoder feedback pass through (PGX card)			Drive Ou	tput Requi	rements		
Analog Input Analog output to replace the individual pump pressure sensors. Analog output speed reference 0-10VDC 4-20ma Other Analog Output Drive Speed (Ft/minute) Bus Voltage Other Special Types of Control Drive system start Drive system start Drive system start Prive system start Drive system start Regenerative to fast stop - full current limit or ramped DC Bus Over Voltage Suppression (Used to prevent overvoltage tripping from an unbalanced load) In Window, or OK to feed product. Counter for # of parts produced Existing load cell information Existing Dancer information	□ At speed	🗆 Er	coder feedback pas	ss through (PGX	(card)		
Analog Input pumppressure sensors. speed reference 0-10VDC Analog Output Analog Output Drive Speed (Ft/minute) Bus Voltage Other Special Types of Control Drive system start Drive system start Prive system start <td>Į</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Comment [mkm1]: May need Analog output to replace the individual</td>	Į						Comment [mkm1]: May need Analog output to replace the individual
Drive Speed (Ft/minute) Bus Voltage Other	Speed referen	nce 🗌 0-10VDC	C 🗆 4-20ma	Other			pump pressure sensors.
Special Types of Control Drive system start Drive system stop Regenerative to fast stop - full current limit or ramped DC Bus Over Voltage Suppression (Used to prevent overvoltage tripping from an unbalanced load) In Window, or OK to feed product. Counter for # of parts produced Existing load cell information Existing Dancer information	Drive Speed	(Ft/minute)					
 Drive system start Drive system stop Regenerative to fast stop - full current limit or ramped DC Bus Over Voltage Suppression (Used to prevent overvoltage tripping from an unbalanced load) In Window, or OK to feed product. Counter for # of parts produced Existing load cell information Existing Dancer information 			-		control		
	 DC Bus Over In Window, o Existing load Existing Dan 	r Voltage Suppre or OK to feed pr cell information cer information	ession (Used to prev oduct.	ent overvoltage	tripping from an unbalance		
				7		BIS8124	
7 BIS8124	-					D15012-T	