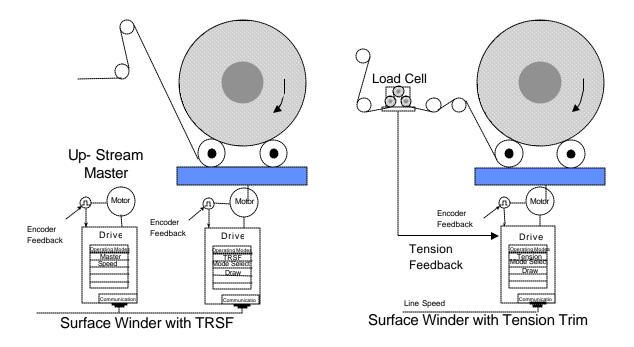


Surface Winders are used to roll up material such as wire, paper, film, metals and textiles. The surface winding method applies the driving power to a fixed diameter roll or rolls, on which the winding roll rests. Thus winding power applied to the surface of the spool or roll being wound. For a surface winder, the surface speed of the winding roll is constant for a given line speed. The rotational speed (RPM) of the roll decreases with roll build up. The wind tension and speed remains constant, and so the load characteristic of this application is constant torque.

Winders have different names in each industry.

Winder Name	Roll Name
Winder	Roll
Beamer	Beam
Takeup, Reeler	Reel
Spooler	Spool
Coiler	Coil
	Winder Beamer Takeup, Reeler Spooler

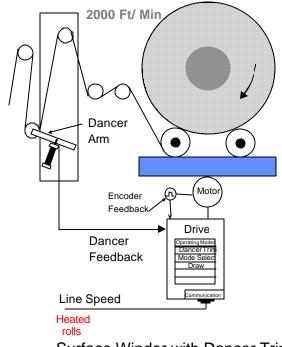


Surface winder drives are divided into groups based on control function.

- 1. Torque Regulator, Speed Follower (TRSF)
- 2. Tension Trim
- 3. Draw
- 4. Dancer Trim

70 % of applications

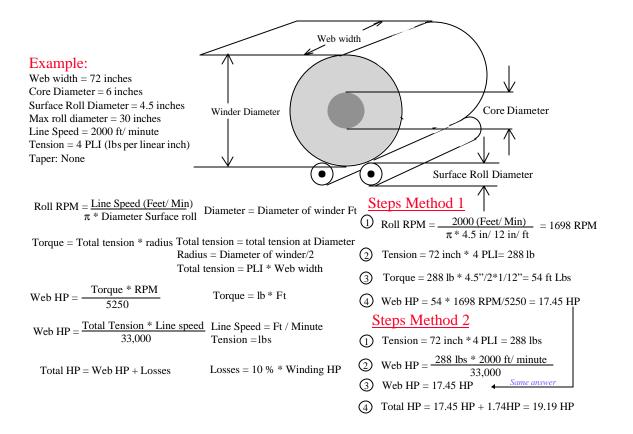
- 10 % of applications
- 15 % of applications
 - 5 % of applications



TRSF (*Torque Regulator, Speed follower*) provides indirect tension control for a sectional or surface winder drive by providing a trim adjustment to a precise speed follower control. Regulating motor current and voltage provides tension control. Under normal operating conditions drive torque (motor current) is controlled, however speed follower control without torque trim is also provided for setup operation or as a maximum speed limit in the event of a web break.

Draw control of the Surface winder is achieved by applying a percentage of speed offset to the speed reference that is sent from the master section. The line speed (Ft/Min) = Speed reference * (1 + Draw %).

Tension Trim in the Surface winder controls the tension of the material used, with tension feedback from a load cell upstream of the winder. Tension is measured and controlled by transducer (load cells) directly actuated by the web. The regulator will automatically adjust the motor speed to compensate for change in tension of the force transducers.



Surface Winder with Dancer Trim

Dancer Trim indirectly provides tension control for a surface winder drive by providing a trim adjustment to a precise speed follower control. Position of a dancer roll is measured and controlled to maintain the dancer roll in a relatively fixed position; web tension is established by the weight of, or a force imposed on, the dancer mechanism. Under normal operating conditions, speed is adjusted to maintain the dancer at the midpoint of its allowable range, however, speed follower control without position trim is also provided for setup operation or as a maximum speed limit in the event of a web break

Sizing Example

In this example calculation, the horsepower rating of the surface winder is 17.45 HP plus the estimated 10 % friction loss of 1.74 HP. The web horsepower is the same as the winding horsepower in this type of configuration. This is due the constant diameter of the surface winder roll.

There are several different ways to calculate Web horsepower. It can be done be either using the torque calculations (Method 1) by inserting the RPM of the driven roll or tension (Method 2) using line speed.

Note: The acceleration and deceleration HP was not taken into consideration. Please call Yaskawa for assistance in the calculations.

Customer Data

Company Name	End user Distributor OEM
Contact Name #1	Contact Name #1 e-mail
Contact Name #2	Contact Name #2 e-mail
Address	City
State	Zip
Phone	Fax

Machine Data

Type of material (paper,	, Textile, Plastic Film	, Metals and Foils)	
, , , , , , , , , ,	, ,	,	

Machine Design speed	(Feet/ Minute ¹)
Machine Design Max roll Diameter	inches
Web Width Inches	
Machine Design Tension	PLI
Roll inertia	$___ LB*FT^2$

Machine Design Core Diameters ______ inches Machine Design Max roll width ______ inches Acceleration time ____ Sec deceleration time ____Sec Surface roll Diameter ______ inches

HP Sizing

1	Roll RPM
2	Total tension
3	Total Torque
4	Web HP
5	Total HP
	Winding HP

Roll RPM – Line Speed (Feet/Min) π^* Diameter Surface roll
Total tension = PLI * Web width
Torque = Total tension * radius Web HP = 5250
Total HP = Web HP + Losses Losses = $10 \% *$

Drive Data

Manufacture		Model #	
Horse Power			
Winder Drive	□ New Application	Retrofit	
Existing Voltage	230VAC	460VAC	□ 575VAC
Existing Drive system	AC drive	DC drive	Eddy Current

¹ Ft/minute Max RPM = π * Core Diameter (Ft)

Motor Data

Existing motor Manufactur	re		Model #	
New motor required	Yes	🗌 No		
Existing motor full load ratings:			AMPS	
				Volt
				RPM (850, 1150, 1750)
Conduit Box location (if m	notor is to be rep	laced)	🗆 F1	\Box F2 \Box F3 or \Box NA
Existing Blower Motor.			V	Voltage, Amps or 🗌 NA
Existing Encoder Manufac	eture			NA
Existing Encoder	Digital	Analog AC	Analog D	с
Existing Encoder Manufacturer.		🗆 NA		
Resolution Existing Encoder (PPR)		or Volts/RPM	1	
Encoder Pickup	Optical	☐ Magnetic pic	kup	
Existing Gear Bo				
Gear Box Ratio				
Existing Gear Box Manufa			Model #	
New Gear Box required	Yes	□ No		
Existing Gear Box ratings	:			Gear Box Ratio
				Frame Size
				C Face
Drive Enclosure i	nformation	l		
Ambient Temperature in c	ontrol room	°F	or	°C
Existing Drive Enclosure	□ NEMA 1	□ NEMA 12	I NEMA 4	X Air conditioning
New Enclosure Spec	□ NEMA 1	□ NEMA 12	I NEMA 4	X Air conditioning
Enclosure options	Duplex ou	itlet	Lights	Empty cabinet for future use
Other				

Existing Power Dist	ribution (Required	if BIS Automation	ı is providing a driv	ve system)	
Isolation Transformer	KVA Prima	ry Voltage A	C Secondary volta	ge AC	
Line Reactors Impedance(%)		Load Reactors Imp	pedance((%)	
Dynamic Braking Res	istor: Duty Cycle i.e. 3%	, 5%%	Resistance	Ohms	
Dynamic Resistor Pov	ver rating	Watts			
Drive Communication	on Requirements				
☐ Modbus Plus	☐ Modbus ☐ Other		Derofibus	Arcnet LAN	
Drive Input Requ	iirements				
□ Start	□ Stop	☐ Forward	Reverse	🗌 Run	
🗌 Jog	Taper on	Preset Speed1	Preset Speed 2		
□ Other					
Drive Output Re	quirements				
Drive alarm fault	Drive severe fault	🗆 Run	Zero speed	☐ At speed	
	Encoder feedback p	Encoder feedback pass through (PGX card)			
□ Other					
Analog Input					
Speed reference	0-10VDC	4-20ma	□ Other		
Analog Output					
Drive Speed (FPM)	Bus Voltage	□ Other			
Special Types of	Control				
Drive system start	Drive system stop	□ Regenerative to fa	ust stop - full current lim	it or ramped	
DC Bus Over Voltage	Suppression (Used to pr	event overvoltage tripp	oing from an unbalanced	load)	
☐ In Window, or OK to	feed product.	Counter for # of pa	arts produced		
□ Other					